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Abstract

The present study examines the potential of using a semi-active controllable damper, whose damping
coefficient can be modulated in real time, for tonal vibration isolation applications. A frequency-domain
control algorithm is developed for determining the damping coefficient variation (at twice the disturbance
frequency) that minimizes the force transmitted to the support at the disturbance frequency. The
effectiveness of open-loop, closed-loop, and adaptive controllers in rejecting the transmitted disturbances
are evaluated. The results of the study indicate that when limits in damping coefficient variation are
considered, the support force could be reduced by about an additional 30%, beyond the levels due to the
passive isolation characteristics (no cyclic damping modulation). When the disturbance phase changes
during operation, the effectiveness of the open-loop controller is rapidly degraded. While the closed-loop
controller (with inputs based on current levels of force transmitted to the support) performed better, there
was still some degradation in performance, and transmitted support forces were not reduced to levels prior
to the change in disturbance phase. The results show that for the semi-active system to retain its
effectiveness in rejecting disturbances, a closed-loop, adaptive controller (with on-line system identification)
is required; even when there is only a change in disturbance, and no change in basic system properties. An
explanation for this phenomenon, related to the bi-linear nature of the semi-active system, is provided.
Cyclic modulations in the damping coefficient were more effective in reducing the transmitted forces at the
disturbance frequency than simply reducing the baseline damping coefficient (to improve the passive
isolation characteristics).
r 2003 Elsevier Ltd. All rights reserved.

ARTICLE IN PRESS

*Corresponding author. Tel.: +1-814-865-1164; fax: +1-814-8654-7092.

E-mail address: fgandhi@psu.edu (F. Gandhi).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0022-460X(03)00788-0



1. Introduction

Undesirable vibrations in many engineering applications are often concentrated in a narrow
frequency range. Such narrowband vibrations could, for example, be produced by rotating
machinery—electric motors, fans and propellers, helicopter rotors, etc. Without any treatment,
the vibrations of the system, as well as the vibration energy transmitted to the support, could
potentially compromise performance and reduce component life. In the case of helicopter rotors
and propeller-driven aircraft, the vibration energy transmitted to the fuselage results in human
fatigue and reduced ride comfort, as well. Thus, considerable effort has been devoted in the past
to suppress and isolate narrowband vibrations, using both passive design concepts as well as
active strategies (see, for example, Refs. [1–11]).
Common passive techniques for reduction of narrowband vibrations, or rejection of tonal

disturbances, include the use of vibration absorbers and isolation schemes. While these concepts
can be reasonably successful, there is usually a weight penalty involved, and their effectiveness can
be significantly reduced with changes in operating conditions (for example, frequency of the
disturbance) as well as changes in properties of the system. Active vibration suppression strategies
such as active mounts, active truss modules, and active control of structural response (ACSR—
used in helicopters) employ actuators to provide active forces for directly canceling the vibratory
forces. Although active methods can be very effective and can be configured to cope with a change
in incoming disturbances (through closed-loop controllers) and variation in system properties
(through adaptive controllers), they usually require significant power and actuator authority.
In recent years, a new approach, known as semi-active control, has been receiving increasing

attention for vibration reduction applications. In this approach, system properties such as
damping or stiffness are controlled to modify the system response and reduce vibration. Since
large active forces are not being directly applied to the system (as in the case of active vibration
reduction schemes), semi-active control schemes are characterized by very low-power require-
ments, while still retaining the ability to adapt to changes in conditions. Additionally, with semi-
active approaches the risk for instability is practically eliminated, because unlike active
approaches, energy is not being pumped into the controlled system. The majority of the studies
on semi-active concepts are focused on broadband vibration suppression and isolation
applications such as controlling seismic response (see, for example, Refs. [12–15]) and in the
design of suspensions in the automobile industry (see, for example, Refs. [16–19]). In recent years,
there has also been a strong interest in the use of semi-active controllable dampers for helicopter
applications (see, for example, Refs. [20–23]). Controllable rotor blade lag dampers can be
exploited to provide high levels of damping in critical operating conditions while reducing the
damping levels during non-critical flight conditions so as to reduce damper and blade periodic
loads and increase component fatigue life. In addition, there is the possibility of modulating the
damping levels over every rotor revolution, at harmonics of the rotational speed, to reduce the
rotor hub vibrations [23]. For practical implementation of the semi-active control concept, a wide
range of discrete devices are available that can change the effective damping or stiffness
characteristics of the system into which they are introduced. These include stiffness control
devices, electrorheological and magnetorheological dampers, friction control devices, controllable
orifice devices, and tuned mass/liquid dampers (see Ref. [24] for a detailed description of such
devices).
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Although vibration reduction using semi-active concepts are attractive for the reasons cited
above, special control algorithms have to be developed, since the semi-active system is non-linear,
or specifically bi-linear, in nature. One of the most commonly used algorithms is based on
the LQR clipped-optimal control scheme [14,25–29]. Other algorithms include ‘‘bang–bang’’ or
‘‘on–off’’ controllers (see, for example, Refs. [15,29–31]), controllers with a more sophisticated
scheduled input [32], and fuzzy-logic controllers [33]. Some researchers have also used non-linear
sliding-mode controllers [12,27]. All of the above studies have clearly demonstrated that semi-
active control systems are quite effective in reducing broadband vibrations, but so far, there has
been little effort to exploit semi-active control for narrowband disturbance rejection.

2. Focus of the present study

The primary focus of the present study is to examine the potential of using semi-active control
for narrowband disturbance rejection applications (the tonal vibration isolation problem). The
system considered uses a semi-active controllable damper whose effective damping coefficient can
be modulated in real time. For a harmonic disturbance, a frequency-domain control algorithm is
developed that determines the controllable damper inputs (cyclic variation in damping coefficient)
for minimizing the forces transmitted to the support. The effectiveness of open-loop, closed-loop,
and adaptive controllers in rejecting the transmitted disturbances are evaluated.

3. Analysis

3.1. System description

To evaluate the effectiveness of the semi-active controllable damper for rejecting narrowband
disturbances (tonal vibration isolation), a simple single-degree-of-freedom (SDOF) system is
considered, as shown in Fig. 1. The mass, m; supported on the semi-active controllable damper
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and parallel spring, is subjected to a harmonic disturbance force of amplitude, F0; and frequency,
O: The total damping coefficient of the semi-active damper is expressed as

CðtÞ ¼ C0 þ C1uðtÞ; ð1Þ

where C0 represents the baseline (passive) damping, and C1uðtÞ represents the variation in
damping due to the command input u (following the approach cited in Ref. [27]). Rejection of the
incoming disturbance (at frequency O) is achieved by cyclically modulating the damping
coefficient of the semi-active controllable damper. Without any modulation of the damping
coefficient ðu ¼ 0Þ; the spring, K ; in parallel with the baseline damper, C0; provides a passive
isolation treatment between the disturbance force, F0; and the force transmitted to the support, Fs:
The equilibrium equation for the system in Fig. 1, and the corresponding force at the support,

can be expressed as

m .x þ ðC0 þ C1uÞ ’x þ Kx ¼ F ¼ F0 sinðOtÞ; Fs ¼ ðC0 þ C1uÞ ’x þ Kx: ð2a;bÞ

The bilinear term, u ’x; which appears in the above equations (such a bilinear term appears in most
semi-active systems), makes it difficult to apply conventional linear control theories.

3.2. Fundamentals of controller design

3.2.1. Overview of the semi-active controller for narrowband disturbance rejection
For narrowband disturbance rejection using a semi-active controllable damper, a frequency-

domain controller is developed, as an adaptation of the approach presented in Ref. [34] for
disturbance rejection using pure active control. The vibratory force transmitted to the support, Fs;
and the command input, u; are expressed in the frequency domain (as cosine and sine components
at specified harmonics of the fundamental frequency, O), and are denoted as z and uc; respectively.
To reject the incoming disturbance at frequency O transmitted to the support, a second harmonic
ð2OÞ input, uc; is primarily required (see Section 3.2.3 for detail); although additional harmonics
could be included as well in certain cases. The control algorithm is based on the minimization of a
quadratic objective function, J; defined as

J ¼ zTW1z þ uT
c W2uc: ð3Þ

In the above equation, W1 and W2 represent penalty weighting corresponding to the vibratory
force at the support, z; and the input, uc; respectively.
Due to the bilinear term in Eqs. (2), the relationship between the input, uc; and the support

vibration, z; is not linear. However, the sensitivity of the vibratory forces transmitted to the
support, z; to perturbations in the frequency-domain inputs, uc; are still expressed as

z ¼ z0 þ Tuc; ð4Þ

where T is the system transfer matrix, and z0 represents the baseline support vibration levels
without the input, uc: The transfer matrix, T ; can be calculated using both off-line and on-line
approaches (detail discussion is presented in Section 3.2.4). A gradient-based method is used to
minimize J and determine the inputs, uc: By substituting Eq. (4) into Eq. (3) and setting @J=@uc ¼
0; the resulting input may be obtained as

uc ¼ %Tz0; %T ¼ �ðTTW1T þ W2Þ
�1TTW1: ð5a;bÞ
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It should be noted that if the system was linear (the bi-linear nature of the system in Eq. (2) is
entirely due to the semi-active control introduced, and would be absent if pure active control was
used), Eq. (4) would be rigorously valid, and the inputs calculated in Eq. (5) would then be
optimal inputs (this would essentially be an implementation of the optimal control algorithm in
the frequency domain [34]). For the semi-active bi-linear system, Eq. (4) is an approximation, and
the inputs calculated in Eq. (5) could therefore be sub-optimal. It should also be noted that
although a disturbance amplitude, F0; is specified for the simulations in the paper (see Eq. (2)), the
control input, uc; depends on the forces transmitted to the support (Eq. (5a)). In a practical
implementation, the forces transmitted to the support (calculated in the present paper for specified
F0) would be measured, and the input, uc; determined based on these measurements. Thus, neither
the amplitude nor the phase of the disturbance needs to be known. Although the disturbance
frequency, O; is specified in the present study, a Fourier analysis of the measured support force,
Fs; would readily yield this frequency. Thus, it should be emphasized that the semi-active control
methodology developed in the present paper could be applied for any disturbance rejection or
vibration isolation problem where the disturbance is harmonic. Beyond that, no information on
the disturbance frequency, amplitude, or phase, is really necessary.
A frequency-to-time domain conversion ðF=TÞ unit is used to obtain the time-domain input, u;

corresponding to the frequency-domain input, uc; calculated in Eq. (5) (see Fig. 2). The amplitude
of the time-domain input is also calculated during the conversion, and the input is modified if
necessary to ensure that maximum or minimum values of physically achievable damping
coefficient are not exceeded. This is discussed in greater detail in the next section.

3.2.2. Controllable damper saturation consideration
In the present study the semi-active controllable damper has a baseline damping coefficient of

C0; and it is assumed that the maximum and minimum physically achievable values of damping
are C0 þ C1 and C0 � C1; respectively. Typically C1 would be some fraction of C0; and is assumed
to be 0:75C0 in the present study (following test data of a controllable damper from Ref. [35]). It
can be deduced from Eq. (1) that the range of variation in u is

�1pup1: ð6Þ

If the actual dimensional input voltage required for a maximum possible increase of C1 in
damping is u0 volts (and the corresponding voltage for a maximum possible reduction is �u0
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volts), then u effectively represents a non-dimensional voltage input (non-dimensionalized by u0).
In the F=T conversion unit (Fig. 2), the input in the time domain, #uðtÞ; is examined and if its
maximum value, umax; exceeds the maximum permissible value (of unity), then the time domain
input signal, #uðtÞ; can be ‘‘scaled down’’ as follows:

uðtÞ ¼
#uðtÞ

umax

: ð7Þ

Alternately, the input can be reduced by increasing the input penalty weight, W2:

3.2.3. Frequency content of the semi-active input, uc

In order to reject a tonal disturbance of frequency, O; a semi-active input at twice the
disturbance frequency is introduced. This is very different from a fully active system where the
control input, uc; would simply consist of cosine and sine components at the disturbance
frequency, O; to cancel the support vibrations, z; at O: For the system under consideration, the
bi-linear semi-active force C1u ’x is essentially being used to cancel, as best as possible, the
C0 ’x þ Kx contribution at the support (see Eq. (2b) and Fig. 1). A semi-active control input at O
(producing damping variation, C1u; at O), would result in a semi-active force C1u ’x at frequency
2O; due to the bi-linear u ’x term. Thus, there would be no rejection of the disturbance at O; and
additionally support vibrations would now be introduced at 2O: Instead, a semi-active input
(damping modulation) at 2O would directly result in forces (proportional to u ’x) at O and 3O; with
the component at O then canceling the incoming disturbance. Thus, for the present problem the
semi-active input, uc; and output, z (used in minimization of objective function, J; Eq. (3)), are
selected as

uc ¼ ½u2Oc u2Os�T; z ¼ ½FOc
s FOs

s �T: ð8a;bÞ

In the above equations, the superscripts ‘‘c’’ and ‘‘s’’ represents cosine and sine components,
respectively, at the corresponding frequencies (O or 2O). It should be noted that while the selected
input, u ¼ u2Oc cos 2Ot þ u2Os sin 2Ot; will reduce the incoming disturbance at O; the support will
now inevitably experience additional forces at 3O: The additional forces could, in principle, be
attenuated by expanding z to include the higher harmonic components, and introducing
additional harmonics in the input uc; as well.
Even though semi-active control will produce some higher harmonic vibratory forces (active

control will not), the power requirements are expected to be relatively small compared to an
isolation strategy using pure active control. In some cases small-to-moderate levels of forces
transmitted at higher harmonics may be acceptable, especially when the support itself is a dynamic
system—for example, a helicopter with the rotor as the vibratory source and the hub or the
fuselage as the support. The forces transmitted at higher harmonics may avoid resonances in the
fuselage, and viscoelastic damping treatments are usually more effective at higher frequencies.

3.2.4. Identification of the transfer matrix, T
The system transfer matrix, T ; can be identified using both off-line and on-line approaches.

Off-line identification of the T matrix is achieved by perturbation of individual components of the
input vector, uc: The first column of T matrix, which corresponds to the first input of uc (denoted
as u1

c), is obtained by setting u1c ¼ u2Oc to a non-zero value (while the other inputs are set to zero),
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and the column is then calculated as

t11

^

t1n

2
64

3
75 ¼

z � z0

u1
c

: ð9Þ

This process is repeated for all entries of the input vector, uc; to obtain all the columns of the T
matrix.
For the on-line identification of the T matrix, an initial estimate is obtained using the batch

least-squares method [36], and it is updated using the recursive least-squares method (with
variable forgetting factors) [37]. The on-line batch least-square methods yields an initial estimate
of the T matrix from an array of inputs, uc; and corresponding support vibration measurements,
z; at m þ 1 time steps, as follows:

T ¼ ZFTðFFTÞ�1; F ¼ ½ucðkÞ ucðk � 1Þ ? ucðk � mÞ�;

Z ¼ ½zðkÞ zðk � 1Þ ? zðk � mÞ�; ð10a2cÞ

where ucðkÞ and zðkÞ represents the input and the corresponding support vibration level at the kth
time step. It should be noted that the number of time steps used has to be greater than or equal to
the number of inputs. For the simulations in the present study, a value of m ¼ 4 was used. For the
batch least squares, an interval of six disturbance cycles was used between the successive inputs.
An on-line recursive least-squares method is implemented for introducing updates to the T

matrix. A variable forgetting factor, l; is used to prevent parameter estimation ‘blow-up’, which
can occur when the estimation is running continuously for a long time without any change in the
parameters being estimated. The recursive least-squares identification is summarized as follows:

TðkÞ ¼ Tðk � 1Þ þ eðkÞKðkÞ; eðkÞ ¼ zðkÞ � Tðk � 1ÞucðkÞ; ð11a;bÞ

KðkÞ ¼ ½I þ uT
c ðkÞPðk � 1ÞucðkÞ��1uT

c ðkÞPðk � 1Þ;

PðkÞ ¼
Pðk � 1Þ
lðkÞ

½I � ucðkÞKðkÞ�; ð11c;dÞ

lðkÞ ¼ 1� ½1� KðkÞucðkÞ�
eTðkÞeðkÞ

S0
; ð11eÞ

where S0 was chosen to be 0.0005, and the lower limit of l was set at 0.15, in the present study.
Updates to TðkÞ were carried out at intervals of four disturbance cycles.

3.3. Open-loop controller

An open-loop control scheme can in principle be effective for narrowband disturbance rejection
(tonal vibration isolation) if the disturbance force and the system are not changing with time. In
such a situation, the control input, uc; is based only on the baseline (uncontrolled) support vibration
levels, z0; as seen in Eq. (5), (and not on any measurements of ‘‘current’’ vibration levels). Once the
uncontrolled support vibration, z0; is determined, and the transfer matrix, T ; is obtained using the
off-line identification, the open-loop control scheme can be implemented following a block
diagram shown in Fig. 3.
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3.4. Closed-loop controller

If the disturbance force changes during the course of operation, an open-loop algorithm is in
general no longer suitable and a closed-loop algorithm has to be employed instead. Using an
approach adapted from Ref. [38], previously applied to the active vibration reduction problem,
the closed-loop control scheme for the present semi-active disturbance-rejection problem is
implemented in the discrete-time domain. The idea is to calculate adjustments in input, Duc; based
on ‘‘current’’ support vibration levels, zðkÞ; such that vibration levels in the next time step are
minimized. In such a case,

DucðkÞ ¼ %TzðkÞ ð12Þ

with %T identical to that in Eq. (5), and the T matrix identified off-line, a priori. The total input to
the controllable damper is then expressed as

ucðkÞ ¼ ucðk � 1Þ þ DucðkÞ: ð13Þ

The block diagram corresponding to such a closed-loop control scheme is shown in Fig. 4.
Updates to the inputs, DucðkÞ; are carried out at intervals of every two disturbance cycles, based
on (calculated or measured) support vibration levels, zðkÞ; at these times.

3.5. Closed-loop adaptive controller

In addition to basing control inputs on currently measured vibration levels to allow for
variations in disturbance force, the system transfer matrix, T ; would require identification and
updating on-line if the system is undergoing changes (making it a closed-loop adaptive control
scheme). However, the present semi-active system is non-linear (bi-linear), and the results in
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Sections 4.3 and 4.4 will show that on-line identification of the transfer matrix is required for
effective disturbance rejection even when the system properties are not changing (and only the
input disturbance changes) during operation. A detailed explanation of this phenomenon is
provided in Section 4.4. The closed-loop adaptive control algorithm is simply the closed-loop
scheme described in the previous section with the controller gain, %T (in Eqs. (5) and (12)), updated
using on-line identification of the transfer matrix, T (as described earlier in Section 3.2.4). The
block diagram for this closed-loop adaptive controller is shown in Fig. 5.

4. Results and discussion

4.1. Baseline system

Numerical simulations are carried out to evaluate the effectiveness of semi-active control
(modulation in damping coefficient of the controllable damper) in rejecting the forces transmitted
to the support due to harmonic disturbance inputs. The system parameters used in the simulations
are given in Table 1. The baseline support force, Fs (z0 in the frequency domain), due to a
disturbance force, F0 sinðOtÞ; is first calculated in the absence of any variations in damping (see
Fig. 6). From Fig. 6(b), the amplitude of the support force is seen to be 41% of the disturbance
force, this attenuation being due to the passive isolation characteristics of C0 and K in parallel. It
should be noted that for the parameters in Table 1 (on ¼ 1 rad=s; O ¼ 2 rad=s—greater than the
crossover frequency), the baseline system is operating in the isolation range, and has good passive
isolation characteristics. In the following simulations, further reductions in the transmitted
vibratory forces due to semi-active modulation of damping coefficient are compared to this
baseline vibration level (due to pure passive isolation).

4.2. Open-loop control scheme

In this section, additional reductions in the disturbance transmitted to the support are examined
when an open-loop control scheme is used. The inputs are calculated using Eq. (5), which specifies
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Table 1

Numerical values of system parameters

Parameter Numerical value

m 1 (kg)

K 1 ðkg=s2Þ
C0=m 0:4 ð1=sÞ
C1=C0 0.75

F0=m 1 (N/kg)

O 2 rad=s

-1.50

-1.00
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0.00
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Fig. 6. (a) Time history, and (b) corresponding frequency spectrum of disturbance force, F (dashed line), and support

force, Fs (solid line), for the baseline uncontrolled system.
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the damping modulation required to minimize the support vibration at frequency O: The first set
of simulations used a penalty weighting of W1 ¼ I (identity matrix), and W2 ¼ 0: Further, no
‘‘scaling down’’ of the control inputs was carried out (as described in Section 3.2.2). For the
control inputs determined directly from Eq. (5), u2Oc ¼ �2:4527 and u2Os ¼ �2:1057; Fig. 7 shows
the frequency content of the steady state vibratory forces transmitted to the support. Although the
amplitude of the support force at the disturbance frequency, O; is seen to be reduced to 9% of the
excitation force amplitude (compared to a force transmissibility of 41% in the absence of any
damping modulations), a higher harmonic component at 3O (with an amplitude of 26% of the
disturbance force) is now observed. This, of course, is expected due to the C1 ’xu term as discussed
in Section 3.2.3. From this perspective, some of the disturbance energy can effectively be thought
of as being transferred to higher harmonics. This may be advantageous in certain conditions when
it is important to avoid specific frequencies due to resonances (e.g., when the harmonic forces
from an engine, propeller or helicopter rotor are transmitted to the fuselage), or to exploit the
improved effectiveness of viscous and viscoelastic damping mechanisms at higher frequencies.
However, it should be noted that the amplitude of the control input, juj ¼ ju2Oj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2OcÞ2 þ ðu2OsÞ2

q
; exceeds unity, so the condition on the maximum permissible input, specified

in Eq. (6), is violated. For the system considered, it is clear that the control input, or damping
variation, that would minimize the transmitted support force is not practically realizable. When
the damping variations required exceed the limits of the controllable damper, energy input into
the system would actually be required to achieve the levels of disturbance rejection at O seen in
Fig. 7, and the system would no longer be semi-active.
In the next set of simulations, the control inputs were ‘‘scaled down’’ (as described in

Section 3.2.2), so that the inputs ðu2Oc ¼ �0:7613 and u2Os ¼ �0:6487) never exceeded the
maximum permissible values. In this case, Fig. 8 shows that the amplitude of the transmitted force
at the disturbance frequency, O; is 29% of the disturbance force amplitude. Compared to a
corresponding value of 41% in the absence of damping variation (recall Fig. 6(b)), this represents
an additional 32% reduction in transmitted vibration over that achieved due to the pure passive
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isolation characteristics. The amplitude of the higher harmonic component at 3O is now 9% of the
disturbance force amplitude.
Fig. 9 shows the force magnitude of the force transmitted to the support (both at the

disturbance frequency, O; as well as the higher harmonic component at 3O), corresponding to
different amplitudes of control input, uc: Vibration levels corresponding to control inputs greater
than unity represent only a mathematical solution not practically achievable by the controllable
damper considered. In fact, for jucj > 1:33; the total damping coefficient would actually be negative

over parts of the cycle. Since energy input would be required to realize the solutions
corresponding to jucjX1; this region has been marked as ‘‘active’’ in Fig. 9. Examining the
vibratory support forces corresponding to different ‘‘semi-active’’ inputs, it can be observed that
as the control input increases, the support force at the disturbance frequency decreases linearly
(producing up to an additional 32% reduction over the passive isolation case for the present
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system), and the 3O component increases linearly. The control input levels were varied using two
different methods—(1) the ‘‘scaling down’’ approach; and (2) using different values of the input
penalty weighting, W2; and the transmitted support forces were found to be identical. Since
scaling-down is simple and convenient, it is used in all subsequent simulations.

4.3. Closed-loop control scheme

Benefits to using a closed-loop controller are expected when the disturbance changes during
operation. In this section, the performance of both open-loop as well as closed-loop controllers
are examined when the disturbance phase changes during the simulation. For the closed-loop
controller, the control inputs are updated based on Eqs. (12) and (13) at intervals of every two
disturbance cycles. The change in disturbance phase, f; is introduced at t ¼ 10p s; as described
below:

FðtÞ ¼
F0 sinðOtÞ; 0pto10p;

F0 sinðOt þ fÞ; tX10p:

(
ð14Þ

For a phase change of f ¼ 45	; Fig. 10 shows the time history of the disturbance, as well as the
force transmitted to the support, when the closed-loop controller is operational. It is seen that
even after the change in disturbance phase occurs, the closed-loop controller is once again able to
reduce the support vibration levels, in a short duration. Fig. 11 shows the amplitude of the
support force at the disturbance frequency, O; using both open- and closed-loop controllers. As
expected, the open-loop controller is no longer effective in disturbance rejection after the
disturbance phase changes (since the control inputs, which are based only on the initial support
forces, are no longer effective after the disturbance phase, and therefore the phase of the current
support forces changes). However, with the closed-loop controller, after a transition period, the
disturbance transmitted to the support is once again reduced. When a disturbance phase change
of f ¼ 90	 is introduced, Fig. 12 once again shows that the closed-loop controller performs better
than the open-loop controller. For the 45	 change in phase angle, the closed-loop control inputs
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are changed to u2Oc ¼ �0:958 and u2Os ¼ 0:2852; and the corresponding inputs for the 90	

disturbance phase change are u2Oc ¼ 0:911 and u2Os ¼ �0:413: It should be noted that although
the closed-loop controller is more effective than the open-loop controller, the steady state
disturbance levels transmitted to the support are not as low as those prior to change in
disturbance phase (as would have been expected if an active force-generator type actuator had
been used).
Fig. 13 shows the magnitude of the forces transmitted to the support at the disturbance

frequency, O; as a function of disturbance phase change (varying between �90	 and 90	). It is
observed that as the phase change increases, the effectiveness of the open-loop control scheme is
degraded significantly, to the extent that the vibratory forces at the support are larger than the
passive isolation case (no semi-active cyclic damping modulations) when the change in
disturbance phase exceeds 740	: Performance degradation is also observed for the closed-loop
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scheme, but is milder. The reason that the closed-loop controller is not able to track phase changes
perfectly (as would have been expected if an active force-generator type actuator was used) can be
explained as follows: for a pure active controller, the control force can be generally written as Au

(where A is some constant coefficient). When the disturbance phase changes by a certain amount
during operation, the phase of the response and the vibratory forces transmitted to the support
will correspondingly change. The input, u; is then based on the current support forces, and since
the active force is simply Au its phase is appropriately adjusted and comparable reductions in
support vibrations are obtained. For the semi-active controller, however, the control force is C1 ’xu:
Thus, when the disturbance phase changes, the response (x and ’x), support force, and control
input, u (proportional to the current support force), would undergo corresponding phase changes,
but the change in phase of the bi- semi-active force, C1 ’xu; is no longer proportional to the change
in disturbance phase (as was the case with pure active control). This suggests that an adaptive
controller (recalculating the system transfer matrix, T ; online) may be required for the semi-active
narrowband disturbance rejection if the disturbance is likely to change during operation, even
when the system parameters themselves remain unchanged.

4.4. Closed-loop adaptive control scheme

The effectiveness of the closed-loop adaptive controller is evaluated in this section when the
disturbance phase changes during operation. Online identification of the transfer matrix, T ; using
batch least-squares approach (Eq. (10)) for initial estimates and recursive least-squares
identification (Eq. (11)), for updates is carried out, as described in Section 3.2.4. For the present
simulations, updates of the transfer matrix (in the recursive least-squares approach) were carried
out every four disturbance cycles. The disturbance phase changes as described in Eq. (14), except
that it is introduced at t ¼ 32p s (instead of 10p s). The first 24p s is used for batch least-squares
identification of the T matrix by inputting a sequence of small input signals, at the end of which
period the controller is switched on. Figs. 14 and 15, respectively, show the variation of the
support force amplitude at the disturbance frequency, O; for disturbance phase changes of 45	
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and 90	: It is seen from both figures that when the adaptive controller is operational, after a
transition period, the support vibratory forces are reduced to levels prior to the change in
disturbance phase (unlike the ‘‘non-adaptive’’ closed-loop controller that did not retain its
effectiveness; recall Figs. 11–13).
Fig. 16 shows the steady state support vibrations at the disturbance frequency, O; as a function

of disturbance phase change (varying between �90	 and 90	). It is observed that even as there is
an increase in disturbance phase change, unlike the open- and closed-loop controllers, the closed-
loop adaptive controller completely retains its effectiveness in reducing support vibrations. Thus,
for a semi-active (bi-linear) system, a closed-loop adaptive controller (continuous on-line
identification of system transfer matrix) is required even when there is only a disturbance change,
and not a ‘‘direct’’ change in system properties. Although, it could be said that for a non-linear
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semi-active system, the ‘‘system’’, as such, is dependent on the excitation, so a change in the
disturbance changes the system itself.

4.5. Effectiveness of cyclic damping modulation with variation in baseline damper size

Results in Sections 4.2–4.4 have indicated that modulating the damping coefficient at twice the
disturbance frequency, O; can produce additional reductions in the transmitted disturbance (at O)
of the order of around 30%; beyond the reductions observed due to the passive isolation
characteristics. Of course, the passive isolation characteristics, themselves, strongly depend on the
baseline damping (and stiffness) in the system. This section examines how the effectiveness of
cyclic modulation of damping coefficient in further reducing transmitted disturbance changes if
the baseline damping of the system (the basic damper size) is changed. This implies a change in the
value of C0; relative to the other system parameters, K and m:However, the maximum value of C1

is held at 0:75C0; so that even as the damper is scaled up or down its basic characteristics are
unchanged and the variation in damping available, relative to the baseline, remains at 75%. For
the baseline system parameters used in Table 1, the passive damping ratio of the SDOF system in
Fig. 1 (Eq. 2(a)) is 20%. When this value of damping ratio is varied (through variation in the
value of C0), the corresponding change in support vibration level (at disturbance frequency, O) is
shown in Fig. 17. As expected, the passive isolation characteristics are not as good for increasing
values of damping ratio (increasing C0), and vice versa. The effectiveness of cyclic modulation of
damping coefficient in further attenuating support vibrations is also shown in Fig. 17. From the
figure, semi-active control (cyclic damping modulation at 2O) produces maximum additional
reductions in support vibrations when the baseline passive damping ratio is around 15–20%, and
the benefits decrease for smaller or larger values of baseline passive damping, C0: It should be
noted that with cyclic modulation in damping coefficient the transmitted vibratory forces at the
disturbance frequency are lower than the forces transmitted by simply reducing the baseline
damping levels, or even setting them to zero (theoretically the best for minimizing transmitted
vibratory forces in a passive isolation treatment). It may not always be possible or desirable to
reduce the transmissibility by simply minimizing the baseline damping (since resonant responses
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during spin-up or -down could be very high, and the decay time for transients due to
perturbations could be inordinately long). Similarly, reduction of transmissibility by using
arbitrarily soft isolation mounts (decreasing K) may not be practical as they could result in large
static deformations and large amplitude oscillations of the mass, m; when the support is
excessively compliant. In such cases, cyclic modulation of the damping coefficient for additional
reductions in transmissibility may be particularly attractive.

5. Summary and concluding remarks

The present study examines the potential of using a semi-active controllable damper, whose
damping coefficient can be modulated in real time, for narrowband disturbance rejection (tonal
vibration isolation) applications. For a harmonic disturbance, a control algorithm is developed in
the frequency domain for determining the input (cyclic damping modulation) that minimizes the
force transmitted to the support at the disturbance frequency. An input, u; with a frequency of
twice the disturbance frequency is used, so that the resulting bilinear semi-active force
(proportional to ’xu) has a component at the disturbance frequency that cancels the force at the
support. Such a scheme, however, will inevitably result in some higher-harmonic support force.
The effectiveness of open-loop, closed-loop, and adaptive controllers in rejecting the transmitted
forces at the disturbance frequency are evaluated. Some of the key observations of the present
study are presented next.
When the calculated variations in damping exceeded the specified limits, input scaling was used,

and the magnitude of the support force at the disturbance frequency could be reduced by about an
additional 30%, beyond the levels due to the passive isolation characteristics (no cyclic damping
modulation). When the disturbance phase changed during operation, the performance of the
open-loop controller rapidly degraded, as the inputs based on the initial ðt ¼ 0Þ support forces
were no longer correctly phased. While the closed-loop controller performed somewhat better
(and generally reduced support vibratory forces to levels lower than those due to pure passive
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isolation), there was still some performance degradation; and support forces could not be reduced
to levels prior to change in disturbance phase, as would have been expected in the case of closed-
loop control using an active force-generator type actuator. However, when a closed-loop adaptive
controller was used (with on-line system identification), the reduction in transmitted support force
was completely maintained even after the disturbance phase underwent change. Thus it is seen
that for narrowband disturbance rejection using a semi-active system (which is bi-linear), a closed-
loop adaptive control scheme is required if the disturbance is likely to change during operation,
even if the basic system parameters themselves are unchanged. Results showed that cyclic
modulations in the damping coefficient were more effective in reducing the transmitted forces at
the disturbance frequency than simply reducing the baseline damping coefficient (to improve the
passive isolation characteristics).
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